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Abstract

Efficient and robust multigrid solvers for anisotropic problems typically use either

semi-coarsened grids or implicit smoothers - line relaxation in 2D and plane relaxation

in 3D. However, both of these may be difficult to implement in codes using multi-

block structured grids where there may be no natural definition of a global 'line' or

'plane'. These multi-block structured grids are often used in fluid dynamic applications

to capture complex geometries and/or to facilitate parallel processing. In this paper,

we investigate the performance of multigrid algorithms using implicit smoothers within

the blocks of a such a grid. By looking at a model problem, the 2-D anisotropic diffusion

equation, we show that true multigrid efficiency is achieved only when the block sizes

are proportional to the strength of the anisotropy. Further, the blocks must overlap and

the size of the overlap must again be proportional to the strength of the anisotropy.

* This research was supported in part by the National Aeronautics and Space Administration under
NASA Contract No. NAS1-19480 while the first author was in residence at the Institute for Computer
Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA
23681-0001
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' i 1. Introduction and Motivation. To illustrate the main issues involved in de-

signing efficient multigrid solvers for anisotropic problems, consider the problem of

solving the partial differential equation

(1) _ Ox 2 + Oy 2 - f(x,y),

along with some suitable boundary condition on a rectangular domain _ C 7_2 whose

boundaries are parallel to the xy coordinates. This PDE can be discretized by placing a

uniform grid (with mesh size h) over the domain and using second-order finite difference

approximations for the derivatives. We associate to each vertex in the grid an index

(I, J) in the usual manner and let U h and F h denote the discrete approximations toI,J I,J

the continuous variables u and f appearing in equation(I). The discrete equations then
have the form

1

(2) h2 [(Uh+l,j ÷ (Vhl,j ÷ U h U h - 2(1 ÷ e)U_j] -- F h-- I,J+l ÷ I,J-1 I,J"

Note that here we have considered an anisotropic PDE discretized on a grid with equal

mesh size in the x and y directions. The same discrete equations arise when an isotropic

PDE (e = 1) is discretized on grid with mesh size h in the y-direction and h/v/_ in the
x-direction.

Multigrid methods rely on two processes: a relaxation process to reduce high-

frequency error and a coarse grid correction process to reduce low-frequency error.

When standard coarsening is used (i.e. coarse grids are obtained from fine grids by

deleting every other line in each coordinate direction) error components that are oscil-

latory in either coordinate direction must be effectively reduced by relaxation as these

components cannot be represented on the coarser grid. Using the tool of local mode

analysis on the above discrete equations with 0 < c << 1, one can show (see [1]) that

point Gauss-Seidel relaxation (or more generally, any point-wise relaxation process)

does not efficiently reduce error components that are oscillatory in the x-direction but

smooth in the y-direction. One solution is to accept this limitation of the relaxation

process and coarsen the grid only in the y-direction. The other solution is line relaxation

in the y-direction. Here all unknowns sharing the same I index are updated simultane-

ously, and local mode analysis shows that this relaxation process effectively reduces all

high-fi'equency error components. Either solution, semi-coarsening or line relaxation,

yield multigrid algorithms which are efficient for small _.

In the field of Computational Fluid Dynamics (CFD), discrete formulations of the

equations representing the flow around aerodynamic bodies are solved. These equations

are solved at discrete points defined by a previously generated body-fitted grid. The

body fitted grid can be what is referred to as a structured or an unstructured grid. For

unstructured grids, the relative position of the grid points is explicitly stored and must

be referred to by the flow solver when calculating the grid metric quantities. For struc-

tured grids, the relative placement of the grid points is implicitly known by the relative

position of the data referring to the points in the program's data arrays. Unstructured

grids offer greater flexibility to fit complex geometries but carry the overhead of needing
1



FIG. 1. Multi-hock grid for a multi-element airfoil.

to carry explicit information about the relative position of each point to its neighbors.

Structured grids are inherently more efficient computationally but are limited in their

ability to fit complex geometries. Block-structured (or multi-block) grids can be used

to provide greater geometric flexibility for structured grids.

In a block-structured grid, both semi-coarsening and line relaxation may be difficult

to implement as there may be no natural definition of a global line. An example of such

a grid is shown in figure(l). Further, if the blocks are stored on different processors

in a parallel computer, line-relaxation will require the solution of a tridiagonal system

which is distributed across, perhaps, many processors. These potential difficulties led

us to investigate the use of line-relaxation only within the blocks of the grid. We will

see in both the numerical experiments and the analysis, that line-relaxation within the

blocks is generMly not enough to obtain efficient multigrid solvers. To obtain the same

convergence factors as obtained using point-wise Gauss-Seidel relaxation of the isotropic

problem, the blocks must overlap with their neighboring blocks and both the size of the

blocks and the overlap must be proportional to the strength of the anisotropy.

2. Numerical Experiments. To investigate the effect of anisotropy strength,

block size and overlap on multigrid efficiency, we construct the following 2D test case.

Using a uniform grid of size (2 k + 1) x (2 _ + 1), k an integer, and mesh size h = 1; the

PDE in equation(i) is discretized using finite differences as in equation(2). Dirichlet

boundary conditions are assumed so that the value of the solution u at extreme grid

points, those with i or j index equal to 1 or 2k + 1, is given. This leaves (2 k - 1) × (2 k - 1)

interior vertices where an approximate solution U)j must be calculated. We divide these

vertices into regular blocks of, as much as possible, equal size: M × M. Note that if M
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FIG. 2. Block-structured grid of lype used in numerical experiments: 33 × 33 grid with M = 8.

does not divide 2 _ - 1, some blocks will be smaller: either M x (M - 1), (M - 1) × M,

o1" (M - 1) x (M - 1). For example, most of the blocks in the 33 x 33 grid shown in

figure (2) contain 8 interior vertices in each direction, but those on the top boundary

include only 7 interior vertices in the vertical direction. Likewise, those on the right

boundary include only 7 interior vertices in the horizontal direction.

This block structure only applies in the relaxation process, which is as follows.

Beginning at the left boundary, each vertical line is scanned in turn. Within each

line the blocks are scanned (beginning at the bottom boundary) and unknowns on the

vertical line that are within the block and the first 5 unknowns in the adjacent blocks are

updated simultaneously to satisfy their discrete equations. The dark dots in figure (3)

indicate which unknowns would be updated simultaneously when M = 8 and 5 = 3.

This relaxation scheme can be viewed as a block Gauss-Seidel scheme with overlapping

blocks. When M = 1, 5 = 0 (i.e. each point is treated as a block) we have pointwise

Gauss-Seidel relaxation, and when M = 2 k + 1 (i.e. the whole grid is treated as one

block) we have y-line Gauss-Seidel relaxation.

We report results for a two-level V(1, 1) cycle. The fine grid is 257 × 257, and the

global coarse grid problem (on a 129 x 129 grid) is solved exactly. Bilinear interpolation

is used to interpolate the correction to the fine grid and full weighting is used to restrict

residuals to the coarse grid. In the experiments the right-hand side, f, is set to zero

and homogeneous Dirichlet boundary conditions are applied. Thus the solution to

the PDE, and the resulting discrete equations, is the trivial one: u = 0. We use

a random initial guess, perform many v-cycles, and monitor the convergence factor

per cycle (the g2 norm of the residual after a cycle divided by the g2 norm of the
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FIG. 3. Unknowns updated simultaneously: M = 8 and 5 = 3.

residual before a cycle). In Table (1) we report the asymptotic convergence factors

for various values of the parameters e,M, and 5. Here the asymptotic convergence

factor is the worst case (largest) convergence factor observed in 50 cycles. As a point

of reference, the asymptotic convergence factor for the isotropic problem, e = 1, using

point Gauss-Seidel relaxation, M = 1,5 = 0, is approximately 0.2. If we want to

maintain this factor for anisotropic problems by using block-wise line relaxation, it

is clear from the table that both the required size of the blocks M and the amount

of overlap _ grow with the strength of the anisotropy. The results in the table (in

particular, the similar convergence factors for the three entries: e = 1/40, M = 4, 5 = 2;

e = 1/160, M = 8, 5 = 4; and e = 1/640, M = 16, 5 = 8) suggest the following:

OBSERVATION 2.1. To obtain convergence factors similar to those for the isotropic

problem, the minimum block size is (.9(1/v/-_). Further, for this minimum block size the

requiredoverlapis also

3. Analysis. Standard local mode analysis of the block-wise line relaxation scheme

used in the above numerical experiments is complicated by the fact that a relaxation

sweep does not transform a given Fourier component into a simple multiple of itself.

Because of this, in the following analysis we will use algebraic arguments to see what

combination of parameters e, M, and 5 can guarantee that block-wise line relaxation

smoothes the error as effectively as full line relaxation.

We consider the same model problem (2D anisotropic diffusion equation discretized

by finite differences on a uniform grid of size n × n), but with periodic boundary

conditions. Given some initial approximate solution U h, the result of full line relaxation

4



of the line with i index equal to I can be written as

(3) u lin_ = L-l(h2fi - cUi-1 -- _UI+I).

Here

" h
f},l

(4) fi = "

if h. I,n

and the n × n matrix

, Ui-1 =

U h
I--1,1

I-1,2

U h
I-l,n

UI+ 1 =

U h
I+1,1

U h
I+1,2

U h
I+l,n

i

-2(1 + _) 1 o o
1 -2(1 + e) 1 0
0 1 -2(1 + e) 1

0 0

1 0

0 1

0 0

0 0

o 1 -2(1 + _) 1
o o 1 -2(1 + e)

Given the same initial approximate solution, the result of relaxing the unknowns with

index (I,j);j = 1, ..., N < n as a block can be similarly written as

(5) u bl°_k .....L-l(h2fi[l " N] eUi_l[1 : N] ¢UI+,[1 • N] Uih,nel U},N+leN ).h

Here we have used the notation fl[1 : N] to denote the N-dimensional vector formed

from the first N components of fI, and similarly UI-I[I : .IV] and Uz+l[1 : iV]. The

vectors el and eN are the N-dimensional unit vectors with a one for the first and N-th

component respectively, and the N × N matrix

L

-2(1 + e) 1 0 0

1 -2(1 + e) 1 0

0 1 -2(1 + c) 1

0 0

0 0

0 0

0 0

0 0

0 1 -2(1+_) 1
0 0 1 -2(1 + _)

Letting ulin_[1 : N] denote the N-dimensional vector formed from the first N compo-

nents of u li_, this vector satisfies

(6) uline[l: "IV]= L-l(h2fi[1.N] - eU,_l[1 • N] - eU,+l[1 : N] _ unell _ UlN+leN).

5



Definingd to be the differencebetweenthe resultsof full line relaxation and block-wise
line block "

line relaxation, i.e. dj = u i - uj ,3 = 1,...,N, yields (by subtracting equation(5)

from equation(Q)

(7) d --(ulinne U/hn)L-lel--/ line ~= - tUN+ 1 -- U_,N+I)L-leN.

In the following, we consider only the second term above; the analysis for the first term

is completely analogous. This second term is the product of two factors: ttN+1°line __ U},N+I,h

the change induced at grid point (I,N + 1) by line relaxation, and 2_-leN. In the

analysis, we would like to get an upper bound on magnitude of d and see how this

bound depends on the parameters e and N. In general, it is not possible to bound
the scalar factor line hUN+I -- U},N+I because changing the value of the initial approximation

at the point (I, N + 1) will not effect the result of line relaxation. In the following,

we make the assumption that this scalar factor is = 1. One could carry this factor

throughout the analysis, or simply multiply our final bound on d by this factor, but

doing so would only obscure (but not invalidate) the points we are making. With

these assumptions the equation relating the difference between full line relaxation and

block-wise line relaxation is

(8) d = --L-leN

Using Gaussian elimination to solve equation(8), one obtains the following formula for

the components of d:

(9) dj = pj_,(e)/pN(e),j = 1,...,N,

where pk(e) is a polynomial in e of degree k. The polynomials are generated by the
recurrence relation

(10)
p0(e) = 1
pl(e) = 2+2c
pk(e) = (2 + 2e)pk-l(¢) -- pk-2(¢) k = 2, ..., N

Defining ak = pk(e)/pk-_ (e), we can rewrite the recurrence relation in the form

(11) OL1 = 2 -[- 2e

ak = 2+2e-- 1/Ctk-1 k = 2,...,IV

THEOREM 3.1. For the sequence defined by the above recurrence relation

ak z 1 + c+ v/_+ d,Vk

Proof: Define

g(x) = 2 + 2e- 1/x.

Theng CC[1+ 2_,2+ 2_]and g(x) C[1+ 2_,2+ 2e],w c [_+ 2e,2 + 2el. F_rther,

o < g'(_) _<1/(1 + 2e)_ < 1, for _ c (1+ 2e,2 + 2_).
6



These conditions guarantee convergence of the sequence {ak}_ to the fixed point a =

1 + e + _+ d (_ee, for example, the fixedpoint theoremsin Chapter2 of [3]). In
addition, by application of the mean value theorem

(12)
(Yk-- 0: = g(0:k-1)-- g(0:)

= gt(_)(0:k_1--0:),_ _ (1+ 2G2 + 2e).

Because 0 < g'(x) < 1 for x C (1 + 2G 2 + 2e) and 0:1 > 0:, equation(12) implies that the

sequence is monotonically decreasing. The theorem follows from the convergence and

the monotonicity.

From this theorem, we have the following bound on d, the difference between the results

for line relaxation and block-wise line relaxation:

Idjl = pj_l(e)/pN(e)

(13)

N= 1-L-jpk-l(e)/p_(e)

N -1= 1-Ik=j(_k)

_< (1 +e + _ + e2) -(N-j+1).

Given some tolerance 7 < 1, we can guarantee that Idjl will be less than 7 by requiring

that

log(_/)
(14) j < N +

log(1 +e + _)

This equation can be viewed as a requirement on N, it must be at least large enough

so that the right-hand side of the inequality is positive. For a fixed e, if we choose

(___) log (7) ,0<fl<l,(15) N= ?_= log(1 q-eq- v/_-+ d)

then [djl < 7 for j = 1,2,... ,fiN. With this choice of N the difference between line

relaxation and block-wise line relaxation will be less th_n the tolerance except at points

near the end of the block- those with index (I,j),flN < j < N. If e is now reduced by

the factor 0 < # < 1, to meet the same criterion (]dj] < 7 for j = 1, 2,..., fiN) we need

(16) N = N,_ = log(1 + #e + x/2pe + #2e2)"

It follows from equations(15) and (16) that

log(1 + e + ,/_ + e_)
(17) N,_

N_log (1 + #¢ + x/2#e + #2d)"

And in the limit as e _ 0,

(is) x._ = _V_/v_.
7



The resultsof this analysisagreewith Observation2.1in the numericalexperiments
section. Namely, equation(14)showsthat relaxing only a segmentof line can smooth
as effectivelyasfull line relaxation at points away from the end points of the segment
providedthat N, the length of the segment, is large enough. However, it may not be an

effective smoother near the endpoints. Therefore, to get effective smoothing within a

block using block-wise line relaxation we must extend the line segments relaxed into the

neighboring blocks. Further, equation(18) shows that for small _ the length of the line

segment must be O(1/v/_) to guarantee effective smoothing away from the endpoints,

i.e. for (j _< /3N). This means that block-wise line relaxation can be an effective

smoother provided that both the block size M and the overlap _ are O(1/v/_).

4. Conclusions. The result of relating the necessary block size and overlap in a

multi-block line relaxation scheme to the strength of the anisotropy that was illustrated

by the numerical results in Section 2, appears to hold for many schemes. Some of these

may be more efficient on parallel computers than the scheme in Section 2.

For example, damped vertical line Jacobi relaxation (with damping parameter ca =

0.7) is known to be an effective smoother for our model problem (see [4]). Figure (4)

illustrates a multi-block version of this relaxation scheme (with block size M = 6 and

overlap _ = 1). Given an initial approximation U, in step 1 a new approximation V

is calculated at the indicated points by block relaxation of each of the marked line

segments using values of U at all points not on that line segment. In step 2, a new

approximation V is again calculated at the indicated points by by block relaxation of

each of the marked line segments using values of U at all points not on that line but

the value of V calculated in step 1 for points directly above and below the line segment.

All line segments in step 1 can be processed simultaneously, likewise in step 2. Then

the final update is given by

U +-- (1 - _)U + _V, a_ = 0.7.

Note that the scheme is simply damped vertical line Jacobi when the grid is treated

as a single block. We have experimented with this scheme, and have found that the

resulting multigrid algorithm is efficient (convergence factors are as good or better than

those for damped Jacobi on the isotropic problem) provided that the block size and

overlap are (.9(1/v_).

For simplicity, our analysis and test problems have focused on rectangular grids.

However, we would expect the same block size and overlap requirements would need to

be met for an efficient multigrid solver on a more general block-structured grid - such as

the one in figure(l). A practical algorithm would likely involve checking to see if there is

an anisotropy that crosses the block interface and, if so, constructing a sensible extension

of the line from one block to its neighbor. This is an easier process to implement than

constructing a "global" line for such a grid. We are currently investigating this idea

(and 3D generalizations) with the aim of developing an efficient relaxation process to

be used in multigrid solvers for general, three dimensional block-structured grids.

5. Acknowledgements. The authors would like to acknowledge their indebted-

ness to Achi Brandt for the idea of this paper. Brief mention of the observation that

8



STEP 1

STEP 2

Fro. 4. Multi-block relaxation based on. damped line 7acobi

the block size must be (.9(1/v/_) can be found in [2]. The observation that the overlap

must be O(1/v/7) was also communicated to the authors by Bran&. To the best of

the authors' knowledge, this paper contains the first published numerical results and

analysis.
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e = 1/10
M=I M=2 M=4 M=8

.690 .498 .305 .196

.108 .108

e = 1/40
M=I M=2 M=4 M=8

.898 .815 .683 .530

.493 .368 .181

.177

= 1/160
M=I M=2 M=4 M=8

.962 .939 .891 .812

.814 .745 .573

.573 .406

.317

.216

c = 1/640
M=I M=2 M=4 M=8

.978 .972 .958 .935

.938 .918 .851

.852 .774

.698

.606

M=I

.978

M=2

.977

.971

= 1/2560
M= 4 M= 8

.975 .970

.966 .948

.947 .924

.891

.854

TABLE I

M= 16 M= 32

.170 .166

M= 16 M= 32

.432 .412

.083 .093

M= 16 M= 32

.719 .648

.393 .288

.220 .125

.129

M= 16 M= 32

.893 .836

.739 .604

.614 .441

.511 .324

.427 .239

.360 .178

.306

.261

.203

M= 16 M= 32

.953 .925

.905 .834

.861 .757

.809 .670

.759 .605

.723 .545

.685 .492

.644 .442

.590 .395

.359

.320

.289

.259

.231

.210

.189

.160

Asymplolic multigrid convergence faclors
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